Hyperparameter Learning in Robust Soft LVQ

نویسندگان

  • Petra Schneider
  • Michael Biehl
  • Barbara Hammer
چکیده

We present a technique to extend Robust Soft Learning Vector Quantization (RSLVQ). This algorithm is derived from an explicit cost function and follows the dynamics of a stochastic gradient ascent. The RSLVQ cost function involves a hyperparameter which is kept fixed during training. We propose to adapt the hyperparameter based on the gradient information. Experiments on artificial and real life data show that the hyperparameter crucially influences the performance of RSLVQ. However, it is not possible to estimate the best value from the data prior to learning. We show that the proposed variant of RSLVQ is very robust with respect to the choice of the hyperparameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition

Learning Vector Quantization (LVQ) [1] is a popular method for multiclass classification. Several variants of LVQ have been developed recently, of which Robust Soft Learning Vector Quantization (RSLVQ) [2] is a promising one. Although LVQ methods have an intuitive design with clear updating rules, their dynamics are not yet well understood. In simulations within a controlled environment RSLVQ p...

متن کامل

Generalized Learning Graph Quantization

This contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (lgq) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform lgq and lgq2.1.

متن کامل

Window-Based Example Selection in Learning Vector Quantization

A variety of modifications have been employed to learning vector quantization (LVQ) algorithms using either crisp or soft windows for selection of data. Although these schemes have been shown in practice to improve performance, a theoretical study on the influence of windows has so far been limited. Here we rigorously analyze the influence of windows in a controlled environment of gaussian mixt...

متن کامل

A fuzzy-soft learning vector quantization for control chart pattern recognition

This paper presents a supervised competitive learning network approach, called a fuzzy-soft learning vector quantization, for control chart pattern recognition. Unnatural patterns in control charts mean that there are some unnatural causes for variations in statistical process control (SPC). Hence, control chart pattern recognition becomes more important in SPC. In order to detect e€ ectively t...

متن کامل

Multivariate class labeling in Robust Soft LVQ

We introduce a generalization of Robust Soft Learning Vector Quantization (RSLVQ). This algorithm for nearest prototype classification is derived from an explicit cost function and follows the dynamics of a stochastic gradient ascent. We generalize the RSLVQ cost function with respect to vectorial class labels: Probabilistic LVQ (PLVQ) allows to realize multivariate class memberships for protot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009